
Backups with Obnam

Lars Wirzenius (liw@liw.fi)

Version obnam-1.21-37-g0d2af29

2

Contents

1 Introduction 7

2 TL;DR: README FIRST: A quick tour of Obnam 9

2.1 Configuration . 9

2.2 Initial backup . 10

2.3 Incremental backups . 10

2.4 Multiple clients in one repository 10

2.5 Removing old generations . 10

2.6 Restoring data . 11

2.7 Using encryption . 11

3 You know you should 13

3.1 Why backup? . 13

3.2 Backup concepts . 13

3.3 Backup strategies . 14

3.4 Backups and security . 16

3.5 Backup storage media considerations 17

3.6 Glossary . 18

4 Installing Obnam 19

4.1 Debian . 19

4.2 Other systems . 20

3

4 CONTENTS

5 Backing up 21

5.1 Your first backup . 21

5.2 Your second backup . 22

5.3 Choosing what to backup, and what not to backup 23

5.4 Storing backups remotely . 23

5.5 URL syntax . 24

5.6 Pull backups . 25

5.7 Configuration files: a quick intro 25

5.8 When your precious data is very large 26

5.9 De-duplication . 27

5.10 De-duplication and safety against checksum collisions 28

5.11 Locking . 30

5.12 Consistency of live data . 30

6 Restoring from backups 33

6.1 Oh no! It’s all FUSEd together 33

6.2 Restoring without FUSE . 34

6.3 An actual example of a restoration 35

6.4 Practice makes prestores painless 36

7 Forgetting old backup generations 37

7.1 Choosing a schedule for forgetting generations 38

8 Verifying backups 41

9 Sharing a repository between multiple clients 43

10 Using encryption 45

10.1 You don’t admit to being a spy, so isn’t encryption unnecessary? 45

10.2 How Obnam encryption works 46

10.3 Setting up Obnam to use encryption 47

10.4 Checking if a repository uses encryption 48

10.5 FIXME: Managing encryption keys in a repository 48

CONTENTS 5

11 Other stuff 49

11.1 k4dirstat cache files . 49

12 Case studies 51

13 Troubleshooting 53

13.1 Turning on full logging . 53

13.2 Reporting problems (“bugs”) . 53

14 Obnam configuration files and settings 55

14.1 Where is my configuration? . 55

14.2 Configuration file syntax . 56

14.3 Checking what my configuration is 57

14.4 Finding out all the configuration settings 57

15 The backup repository internals 59

15.1 Repository file permissions . 59

16 Performance tuning 61

16.1 Running Obnam under the Python profiler 61

17 Participating in Obnam development 63

17.1 Helping support users . 64

17.2 Writing and updating documentation 65

17.3 Translating documentation . 66

17.4 Developing the code . 66

17.5 Project governance . 66

18 Appendix: Error messages 67

18.1 By error code . 67

18.2 By name . 69

19 SEE ALSO 73

20 Legal stuff 75

6 CONTENTS

21 Supporting Obnam development 77

Chapter 1

Introduction

. . . backups? did someone talk about backups? I’m sure I heard
someone mention backups here somewhere. Backups! BACKUPS!
BACKUPS ARE AWESOME!

That’s a direct quote from my IRC history. I find backups quite interesting,
particularly from an implementation point of view, and I may sometimes obsess
about them a little bit. This is why I’ve written my own backup software. It’s
called Obnam. This is its manual.

I’m unusual: most people find backups boring at best, and tedious most of the
time. When I talk with people about backups, the usual reaction is “um, I know
I should”. There are a lot of reasons for this. One is that backups are a lot like
insurance: you have to spend time, effort, and money up front to have any use
for them. Another is that the whole topic is scary: you have to think about when
things go wrong, and that puts people off. A third reason is that while there are
lots of backup tools and methods, it’s not always easy to choose between them.

This manual is for the Obnam program, but it tries to be useful to everyone
thinking about backups.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

TL;DR: README FIRST:
A quick tour of Obnam

You probably only need to read this chapter.

This chapter gives a quick introduction to the most important parts of Obnam.
The rest of the book is basically a verbose version of this chapter. You should
start by reading this chapter, then pretend you’ve read the rest, and everyone
will look at you in awe at cocktail parties. I promise, nobody else will have read
the rest of the book either, so there’s no risk of getting caught.

2.1 Configuration

Obnam does not require a configuration file, and you can configure everything
using command line options. You can, however, use a configuration file: save it
as ~/.obnam.conf and make it have content like this:

[config]
repository = sftp://your.server/home/youruser/backups/
log = /home/liw/obnam.log

The examples below assume you have created a configuration file, so that options
do not need to be repeated every time.

You probably want to enable the log setting, so that if there is a problem, you
can find out all the information available to fix it from the log file.

9

10 CHAPTER 2. TL;DR: README FIRST: A QUICK TOUR OF OBNAM

2.2 Initial backup

Your first backup will be pretty big, and will take a long time. A long backup
may crash, but that is not a problem: Obnam makes a checkpoint every one
hundred megabytes or so.

obnam backup $HOME

2.3 Incremental backups

When you’ve made your initial, full backup (possibly in stages), you can back
up any changes simply by running Obnam again:

obnam backup $HOME

This will back up all new files, and any changed files. It will also record which
files have been deleted since the previous backup.

You can run Obnam as often as you like. Only the changes from the previous
run are backed up.

2.4 Multiple clients in one repository

You can backup multiple clients to a single repository by providing the option
–client-name= when running the program. Backup sets will be kept separate, but
data de-duplication will happen across all the sets.

2.5 Removing old generations

Eventually your backup repository will grow so big you’ll want to remove some
old generations. The Obnam operation is called forget:

obnam forget --keep=30d

This would keep one backup from each of the last thirty calendar days, counting
from the newest backup (not current time). If you’ve backed up several times
during a day, only the latest generation from that day is kept.

Any data that is part of a generation that is to be kept will remain in the
repository. Any data that exists only in those generations that is to be forgotten
gets removed.

2.6. RESTORING DATA 11

2.6 Restoring data

You will hopefully never need this, but the whole point of having backups is to
restore data in case of a disaster.

obnam restore --to=/var/tmp/my-recovery $HOME

The above command will restore your entire home directory to /var/tmp/my-recovery,
from the latest backup generation. If you only need some particular directory or
file, you can specify that instead:

obnam restore --to=/var/tmp/my-recover $HOME/Archive/receipts

If you can’t remember the name of the file you need, use obnam ls:

obnam ls > /var/tmp/my-recovery.list

This will output the contents of the backup generation, in a format similar to
ls -lAR. Save it into a file and browse that. (It’s a fairly slow command, so it’s
comfortable to save to a file.)

2.7 Using encryption

Obnam can use the GnuPG program to encrypt the backup. To enable this, you
need to have or create a PGP key, and then configure Obnam to use it:

[config]
encrypt-with = CAFEBABE

Here, CAFEBABE is the key identifier for your key, as reported by GnuPG. You
need to have gpg-agent or equivalent software configured, for now, because
Obnam has no way to ask for or configure the passphrase.

After this, Obnam will automatically encrypt and decrypt data.

Note that if you encrypt your backups, you’ll want to back up your GPG key
in some other way. You can’t restore any files from the obnam backup without
it, so you can’t rely on the same obnam backup to back up the GPG key itself.
Back up your passphrase-encrypted GPG key somewhere else, and make sure
you have a passphrase strong enough to stand up to offline brute-force attacks.
Remember that if you lose access to your GPG key, your entire backup becomes
useless.

12 CHAPTER 2. TL;DR: README FIRST: A QUICK TOUR OF OBNAM

If you enable encryption after making backups, you need to start over with a
new repository. You can’t mix encrypted and unencrypted backups in the same
repository.

(There are a bunch of Obnam commands for administering encryption. You
won’t need them, unless you share the same repository with several machines.
In that case, you should read the manual page.)

Chapter 3

You know you should

This chapter is philosophical and theoretical about backups. It discusses why
you should back up, various concepts around backups, what kinds of things you
should think about when setting up backups and what to do in the long term
(verification, etc). It also discusses some assumptions Obnam makes and some
constraints it imposes.

3.1 Why backup?

FIXME: Add some horror stories here about why backups are important. With
references/links.

3.2 Backup concepts

This section covers core concepts in backups, and defines some terminology used
in this book.

Live data is the data you work with or keep. It’s the files on your hard drive:
the documents you write, the photos you save, the unfinished novels you wish
you’d finish.

Most live data is precious in that you’ll be upset if you lose it. Some live
data is not precious: your web browser cache probably isn’t, for example. This
distinction can let you limit the amount of data you need to back up, which can
significantly reduce your backup costs.

A backup is a spare copy of your live data. If you lose some or all of your live
data, you can get it back (“restore”) from your backup. The backup copy is,

13

14 CHAPTER 3. YOU KNOW YOU SHOULD

by practical necessity, older than your live data, but if you made the backup
recently enough, you won’t lose much.

Sometimes it’s useful to have more than one old backup copy of your live data.
You can have a sequence of backups, made at different times, giving you a
backup history. Each copy of your live data in your backup history is a
generation. This lets you retrieve a file you deleted a long time ago, but didn’t
realise you needed until now. If you only keep one backup version, you can’t get
it back, but if you keep, say, a daily backup for a month, you have a month to
realise you need it, before it’s lost forever.

The place your backups are stored is the backup repository. You can use
many kinds of backup media for backup storage: hard drives, tapes, optical
disks (DVD-R, DVD-RW, etc), USB flash drives, online storage, etc. Each type
of medium has different characteristics: size, speed, convenience, reliability, price,
which you’ll need to balance for a backup solution that’s reasonable for you.

You may need multiple backup repositories or media, with one of them located
off-site, away from where your computers normally live. Otherwise, if you house
burns down, you’ll lose all your backups too.

You need to verify that your backups work. It would be awkward to go to
the effort and expense of making backups and then not be able to restore your
data when you need to. You may even want to test your disaster recovery by
pretending that all your computer stuff is gone, except for the backup media.
Can you still recover? You’ll want to do this periodically, to make sure your
backup system keeps working.

There is a very large variety of backup tools. They can be very simple and
manual: you can copy files to a USB drive using your file manager, once a blue
moon. They can also be very complex: enterprise backup products that cost
huge amounts of money and come with a multi-day training package for your
sysadmin team, and which require that team to function properly.

You’ll need to define a backup strategy to tie everything together: what live
data to back up, to what medium, using what tools, what kind of backup history
to keep, and how to verify that they work.

3.3 Backup strategies

You’ve set up a backup repository, and you have been backing up to it every
day for a month now: your backup history is getting long enough to be useful.
Can you be happy now?

Welcome to the world of threat modelling. Backups are about insurance, of
mitigating small and large disasters, but disasters can strike backups as well.
When are you so safe that no disaster will harm you?

3.3. BACKUP STRATEGIES 15

There is always a bigger disaster waiting to happen. If you backup to a USB
drive on your work desk, and someone breaks in and steals both your computer
and the USB drive, the backups did you no good.

You fix that by having two USB drives, and you keep one with your computer
and the other in a bank vault. That’s pretty safe, unless there’s an earth quake
that destroys both your home and the bank.

You fix that by renting online storage space from another country. That’s quite
good, except there’s a bug in the operating system that you use, which happens
to be the same operating system the storage provider uses, and hackers happen
to break into both your and their systems, wiping all files.

You fix that by hiring a 3D printer that prints slabs of concrete on which your
data is encoded using QR codes. You’re safe until there’s a meteorite hits Earth
and destroys the entire civilisation.

You fix that by sending out satellites with copies of your data, into stable orbits
around all nine planets (Pluto is too a planet!) in the solar system. Your data is
safe, even though you yourself are dead from the meteorite, until the Sun goes
supernova and destroys everything in the system.

There is always a bigger disaster. You have to decide which ones are likely
enough that you want to consider them, and also decide what the acceptable
costs are for protecting against them.

A short list of scenarios for thinking about threats:

• What if you lose your computer?
• What if you lose your home and all of its contents?
• What if the area in which you live is destroyed?
• What if you have to flee your country?

These questions do not cover everything, but they’re a start. For each one, think
about:

• Can you live with your loss of data? If you don’t restore your data, does it
cause a loss of memories, or some inconvenience in your daily life, or will
it make it nearly impossible to go back to living and working normally?
What data do you care most about?

• How much is it worth to you to get your data back, and how fast do you
want that to happen? How much are you willing to invest money and effort
to do the initial backup, and to continue backing up over time? And for
restores, how much are you willing to pay for that? Is it better for you to
spend less on backups, even if that makes restores slower, more expensive,
and more effort? Or is the inverse true?

16 CHAPTER 3. YOU KNOW YOU SHOULD

The threat modelling here is about safety against accidents and natural disasters.
Threat modelling against attacks and enemies is similar, but also different, and
will be the topic of the next episode in the adventures of Bac-Kup.

3.4 Backups and security

You’re not the only one who cares about your data. A variety of governments,
corporations, criminals, and overly curious snoopers are probably also interested.
(It’s sometimes hard to tell them apart.) They might be interested to find
evidence against you, blackmail you, or just curious about what you’re talking
about with your other friends.

They might be interested in your data from a statistical point of view, and don’t
particularly care about you specifically. Or they might be interested only in you.

Instead of reading your files and e-mail, or looking at your photos and videos,
they might be interested in preventing your access to them, or to destroy your
data. They might even want to corrupt your data, perhaps by planting child
porn in your photo archive.

You protect your computer as well as you can to prevent these and other bad
things from happening. You need to protect your backups with equal care.

If you back up to a USB drive, you should probably make the drive be encrypted.
Likewise, if you back up to online storage. There are many forms of encryption,
and I’m unqualified to give advice on this, but any of the common, modern ones
should suffice except for quite determined attackers.

Instead of, or in addition to, encryption, you could ensure the physical security
of your backup storage. Keep the USB drive in a safe, perhaps, or a safe deposit
box.

The multiple backups you need to protect yourself against earthquakes, floods,
and roving gangs of tricycle-riding clowns, are also useful against attackers. They
might corrupt your live data, and the backups at your home, but probably won’t
be able to touch the USB drive encased in concrete and buried in the ground at
a secret place only you know about.

The other side of the coin is that you might want to, or need to, ensure others do
have access to your backed up data. For example, if the clown gang kidnaps you,
your spouse might need access to your backups to be able to contact your MI6
handler to ask them to rescue you. Arranging safe access to (some) backups is
an interesting problem to which there are various solutions. You could give your
spouse the encryption passphrase, or give the passphrase to a trusted friend or
your lawyer. You could also use something like libgfshare to escrow encryption
keys more safely.

http://www.digital-scurf.org/software/libgfshare

3.5. BACKUP STORAGE MEDIA CONSIDERATIONS 17

3.5 Backup storage media considerations

This section discusses possibilities for backup storage media, and their various
characteristics, and how to choose the suitable one for oneself.

There are a lot of different possible storage media. Perhaps the most important
ones are:

• Magnetic tapes of various kinds.
• Hard drives: internal vs external, spinning magnetic surfaces vs SSDs vs

memory sticks.
• Optical disks: CD, DVD, Blu-ray.
• Online storage of various kinds.
• Paper.

We’ll skip more exotic or unusual forms, such as microfilm.

Magnetic tapes are traditionally probably the most common form of backup
storage. They can be cheap per gigabyte, but tend to require a fairly hefty
initial investment in the tape drive. Much backup terminology comes from tape
drives: full backup vs incremental backup, especially. Obnam doesn’t support
tape drives at all.

Hard drives are a common modern alternative to tapes, especially for those
who do not wish pay for a tape drive. Hard drives have the benefit of every bit
of backup being accessible at the same speed as any other bit, making finding
a particular old file easier and faster. This also enables snapshot backups,
which is the model Obnam uses.

Different types of hard drives have different characteristics for reliability, speed,
and price, and they may fluctuate fairly quickly from week to week and year to
year. We won’t go into detailed comparisons of all the options. From Obnam’s
point of view, anything that can look like a hard drive (spinning rust, SSD, USB
flash memory stick, or online storage) is usable for storing backups, as long as it
is re-writable.

Optical disks, particularly the kind that are write-once and can’t be updated,
can be used for backup storage, but they tend to be best for full backups that
are stored for long periods of time, perhaps archived permanently, rather than
for a actively used backup repository. Alternatively, they can be used as a kind
of tape backup, where each tape is only ever used once. Obnam does not support
optical drives as backup storage.

Paper likewise works better for archival purposes, and only for fairly small
amounts of data. However, a backup printed on good paper with archival ink can
last decades, even centuries, and is a good option for small, but very precious
data. As an example, personal financial records, secret encryption keys, and love
letters from your spouse. These can be printed either normally (preferably in a

18 CHAPTER 3. YOU KNOW YOU SHOULD

font that is easy to OCR), or using two-dimensional barcode (e.g, QR). Obnam
doesn’t support these, either.

Obnam only works with hard drives, and anything that can simulate a
read/writable hard drive, such as online storage. By amazing co-incidence, this
seems to be sufficient for most people.

3.6 Glossary

• backup: a separate, safe copy of your live data that will remain intact
even if the primary copy gets destroyed, deleted, or wrongly modified

• corruption: unwanted modification to (backup) data
• disaster recovery: what you do when something goes wrong
• full backup: a fresh backup of all precious live data
• generation: a backup in a series of backups of the same live data, to give

historical insight
• history: all the backup generations
• incremental backup: a backup of any changes (new files, modified files,

deletions) compared to a previous backup generation (either the previous
full backup, or the previous incremental backup); usually, you can’t remove
a full backup without removing all of the incremental backups that depend
on it

• live data: all the data you have
• local backup: a backup repository stored physically close to the live data
• media, backup media, storage media: where a backup repository is

stored
• off-site backup: a backup repository stored physically far away from the

live data
• precious data: all the data you care about; cf. live data
• repository: the location where backup data is stored
• restore: retrieving data from a backup repository
• root, backup root: a directory that is to be backed up, including all files

in it, and all its subdirectories
• snapshot backup: an alternative to full/incremental backups, where

every backup generation is effectively a full backup of all the precious live
data, and can be restored and removed as easily as any other generation

• strategy, backup strategy: a plan for how to make sure your data is
safe even if the dinosaurs return in space ships to re-take world now that
the ice age is over

• verification: making sure a backup system works and that data actually
can be restored from backups and that the backups have not become
corrupted

Chapter 4

Installing Obnam

This chapter explains how to install Obnam. It is not a very extensive set of
instructions, yet. In particular, it really only caters to Debian users. Instructions
for other systems would be very much welcome.

4.1 Debian

It is easiest to install Obnam on a Debian system. If you’re running Debian
wheezy or a later release, Obnam is included and you can just install it:

apt-get install obnam

There may be a newer version of Obnam on the author’s site. The rest of this
section explains how to install from there.

Add the following line to your /etc/apt/sources.list file:

deb http://code.liw.fi/debian squeeze main

Then run the following commands as root:

• apt-get update
• apt-get install obnam

The commands will complain that the PGP key used to sign the archive is
not known to apt. You can either ignore this, or add the key from http:
//code.liw.fi/apt.asc to your key, after suitable verification.

19

http://code.liw.fi/apt.asc
http://code.liw.fi/apt.asc

20 CHAPTER 4. INSTALLING OBNAM

4.2 Other systems

For other systems, you need to install from sources. See the README file in the
source tree for instructions.

Chapter 5

Backing up

This chapter discusses the various aspects of making backups with Obnam.

5.1 Your first backup

Let’s make a backup! To walk through the examples in this directory, you need
to have some live data to backup. The examples use specific filenames for this.
You’ll need to adapt the examples to your own files. The examples assume
your home directory is /home/tomjon, and that you have a directory called
Documents in your home directory for your documents. Further, it assumes you
have a USB drive mounted at /media/backups, and that you will be using a
directory tomjon-repo on that drive as the backup repository.

With those assumptions, here’s how you would backup your documents:

obnam backup -r /media/backups/tomjon-repo ~/Documents

That’s all. It will take a little while, if you have a lot of documents, but eventually
it’ll look something like this:

Backed up 11 files (of 11 found),
uploaded 97.7 KiB in 0s at 647.2 KiB/s average speed

(In reality, the above text will be all on one line, but that didn’t fit in this
manual’s line width.)

This tells you that Obnam found a total of eleven files, of which it backed up
all eleven. The files contained a total of about a hundred kilobytes of data, and
that the upload speed for that data was over six hundred kilobytes per second.

21

22 CHAPTER 5. BACKING UP

The actual units are using IEC prefixes, which are base-2, to avoid ambiguity.
See Wikipedia on kibibytes for more information.

Your first backup run should probably be quite small to see that all settings
are right without having to wait a long time. You may want to choose a small
directory to start with, instead of your entire home directory.

5.2 Your second backup

Once you’ve run your first backup, you’ll want to run a second one. It’s done
the same way:

obnam backup -r /media/backups/tomjon-repo ~/Documents

Note that you don’t need to tell Obnam whether you want a full backup or
an incremental backup. Obnam makes each backup generation be a snapshot
of the data at the time of the backup, and doesn’t make a difference between
full and incremental backups. Each backup generation is equal to each other
backup generation. This doesn’t mean that each generation will store all the
data separately. Obnam makes sure each new generation only backs up data
that isn’t already in the repository. Obnam finds that data in any file in any
previous generation, amongst all the clients sharing the same repository.

We’ll later cover how to remove backup generations, and you’ll learn that
Obnam can remove any generation, even if it shares some of the data with other
generations, without those other generations losing any data.

After you’ve your second backup generation, you’ll want to see the generations
you have:

$ obnam generations -r /media/backups/tomjon-repo
2 2014-02-05 23:13:50 .. 2014-02-05 23:13:50 (14 files, 100000 bytes)
5 2014-02-05 23:42:08 .. 2014-02-05 23:42:08 (14 files, 100000 bytes)

This lists two generations, which have the identifiers 2 and 5. Note that generation
identifiers are not necessarily a simple sequence like 1, 2, 3. This is due to how
some of the internal data structures of Obnam are implemented, and not because
its author in any way thinks it’s fun to confuse people.

The two time stamps for each generation are when the backup run started
and when it ended. In addition, for each generation is a count of files in that
generation (total, not just new or changed files), and the total number of bytes
of file content data they have.

https://en.wikipedia.org/wiki/Kibibyte

5.3. CHOOSING WHAT TO BACKUP, AND WHAT NOT TO BACKUP 23

5.3 Choosing what to backup, and what not to
backup

Obnam needs to be told what to back up, by giving it a list of directories, known
as backup roots. In the examples in this chapter so far, we’ve used the directory
~/Documents (that is, the directory Documents in your home directory) as the
backup root. There can be multiple backup roots:

obnam -r /media/backups/tomjon-repo ~/Documents ~/Photos

Everything in the backup root directories gets backed up – unless it’s explicitly
excluded. There are several ways to exclude things from backups:

• The --exclude setting uses regular expressions that match the full path-
name of each file or directory: if the pathname matches, the file or directory
is not backed up. In fact, Obnam pretends it doesn’t exist. If a directory
matches, then any files and sub-directories also get excluded. This can be
used, for example, to exclude all MP3 files (--exclude=’\.mp3$’).

• The --exclude-caches setting excludes directories that contain a special
“cache tag” file called CACHEDIR.TAG, that starts with a specific sequence
of bytes. Such a tag file can be created in, for example, a Firefox or other
web browser cache directory. Those files are usually not important to back
up, and tagging the directory can be easier than constructing a regular
expression for --exclude.

• The --one-file-system setting excludes any mount points and the con-
tents of the mounted filesystem. This is useful for skipping, for example,
virtual filesystems such as /proc, remote filesystems mounted over NFS,
and Obnam repositories mounted with obnam mount (which we’ll cover in
the next chapter).

In general it is better to back up too much rather than too little. You should
also make sure you know what is and isn’t backed up. The --pretend option
tells Obnam to run a backup, except it doesn’t change anything in the backup
repository, so it’s quite fast. This way you can see what would be backed up,
and tweak exclusions as needed.

5.4 Storing backups remotely

You probably want to store at least one backup remotely, or “off site”. Obnam
can make backups over a network, using the SFTP protocol (part of SSH). You
need the following to achieve this:

24 CHAPTER 5. BACKING UP

• A server that you can access over SFTP. This can be a server you own, a
virtual machine (“VPS”) you rent, or some other arrangement. You could,
for example, have a machine at a friends’ place, in exchange for having one
of their machines at your place, so that you both can backup remotely.

• An ssh key for logging into the server. Obnam does not currently support
logging in via passwords.

• Enough disk space on the server to hold your backups.

Obnam only uses the SFTP part of the SSH connection to access the server. To
test whether it will work, you can run this command:

sftp USER@SERVER

Change USER@SERVER to be your actual user and address for your server. This
should say something like Connected to localhost. and you should be able
to run the ls -la command to see a directory list of files on the remote side.
Once all of that is set up correctly, to get Obnam to use the server as a backup
repository, you only need to give an SFTP URL:

obnam -r sftp://USER@SERVER/~/my-precious-backups

For details on SFTP URLs, see the next section.

5.5 URL syntax

Whenever obnam accepts a URL, it can be either a local pathname, or an SFTP
URL. An SFTP URL has the following form:

sftp://[user@]domain[:port]/path

where domain is a normal Internet domain name for a server, user is your
username on that server, port is an optional numeric port number, and path is
a pathname on the server side. Like bzr(1), but unlike the SFTP URL standard,
the pathname is absolute, unless it starts with /~/ in which case it is relative to
the user’s home directory on the server.
Examples:

• sftp://liw@backups.pieni.net/~/backup-repo is the directory
backup-repo in the home directory of the user liw on the server
backups.pieni.net. Note that we don’t need to know the absolute path
of the home directory.

5.6. PULL BACKUPS 25

• sftp://root@my.server.example.com/home is the directory /home (note
absolute path) on the server my.server.example.com, and the root user
is used to access the server.

• sftp://foo.example.com:12765/anti-clown-society is the directory
/anti-clown-society on the server foo.example.com, accessed via the
port 12765.

You can use SFTP URLs for the repository, or the live data (--root), but note
that due to limitations in the protocol, and its implementation in the paramiko
library, some things will not work very well for accessing live data over SFTP.
Most importantly, the handling of of hardlinks is rather suboptimal. For live
data access, you should not end the URL with /~/ and should append a dot at
the end in this special case.

5.6 Pull backups

Obnam can also access the live data over SFTP, instead of via the local filesystem.
This means you can run Obnam on, say, your desktop machine to backup your
server, or on your laptop to backup your phone (assuming you can get an SSH
server installed on your phone). Sometimes it is not possible to install Obnam
on the machine where the live data resides, and then it is useful to do a pull
backup instead: you run Obnam on a different machine, and read the live data
over the SFTP protocol.
To do this, you specify the live data location (the root setting, or as a command
line argument to obnam backup) using an SFTP URL. You should also set the
client name explicitly. Otherwise Obnam will use the hostname of the machine
on which it runs as the name, and this can be highly confusing: the client name
is my-laptop and the server is down-with-clowns and Obnam will store the
backups as if the data belongs to my-laptop.
It gets worse if you backup your laptop as well to the same backup repository.
Then Obnam will store both the server and the laptop backups using the same
client name, resulting in much confusion to everyone.
Example:

obnam backup -r /mnt/backups sftp://server.example.com/home \
--client-name=server.example.com

5.7 Configuration files: a quick intro

By this time you may have noticed that Obnam has a number of configurable
settings you can tweak in a number of ways. Doing it on the command line is

26 CHAPTER 5. BACKING UP

always possible, but then you get quite long command lines. You can also put
them into a configuration file.

Every command line option Obnam knows can be set in a configuration file.
Later in this manual there is a whole chapter that covers all the details of
configuration files, and all the various settings you can use. For now, we’ll give a
quick introduction.

An Obnam configuration looks like this:

[config]
repository = /media/backup/tomjon-repo
root = /home/liw/Documents, /home/liw/Photos
exclude = \.mp3$
exclude-caches = yes
one-file-system = no

This form of configuration file is commonly known as an “INI file”, from Microsoft
Windows .INI files. All the Obnam settings go into a section titles [config],
and each setting has the same name as the command line option, but without
the double dash prefix. Thus, it’s --exclude on the command line and exclude
in the configuration file.

Some settings can have multiple values, such as exclude and root. The values
are comma separated. If there’s a lot of values, you can split them on multiple
lines, where the second and later lines are indented by space or TAB characters.

That should get you started, and you can reference the “Obnam configuration
files and settings” chapter for all the details.

5.8 When your precious data is very large

When your precious data is very large, the first backup may a very long time.
Ditto, if you get a lot of new precious data for a later backup. In these cases,
you may need to be very patient, and just let the backup take its time, or you
may choose to start small and add to the backups a bit at a time.

The patient option is easy: you tell Obnam to backup everything, set it running,
and wait until it’s done, even if it takes hours or days. If the backup terminates
prematurely, e.g., because of a network link going down, you won’t have to start
from scratch thanks to Obnam’s checkpoint support. Every gigabyte or so (by
default) Obnam stops a backup run to create a checkpoint generation. If the
backup later crashes, you can just re-run Obnam and it will pick up from the
latest checkpoint. This is all fully automatic, you don’t need to do anything for it
to happen. See the --checkpoint setting for choosing how often the checkpoints
should happen.

5.9. DE-DUPLICATION 27

Note that if Obnam doesn’t get to finish, and you have to re-start it, the
scanning starts over from the beginning. The checkpoint generation does not
contain enough state for Obnam to continue scanning from the latest file in the
checkpoint: it’d be very complicated state, and easily invalidated by filesystem
changes. Instead, Obnam scans all files, but most files will hopefully not have
changed since the checkpoint was made, so the scanning should be relatively
fast.
The only problem with the patient option is that your most precious data doesn’t
get backed up while all your large, but less precious data is being backed up.
For example, you may have a large amount of downloaded videos of conference
presentations, which are nice, but not hugely important. While those get backed
up, your own documents do not get backed up.
You can work around this by initially excluding everything except the most
precious data. When that is backed up, you gradually reduce the excludes,
re-running the backup, until you’ve backed up everything. As an example, your
first backup might have the following configuration:

obnam backup -r /media/backups/tomjon-repo ~ \
--exclude ~/Downloads

This would exclude all downloaded files. The next backup run might exclude
only video files:

obnam backup -r /media/backups/tomjon-repo ~ \
--exclude ~/Downloads/'.*\.mp4$'

After this, you might reduce excludes to allow a few videos, such as those whose
name starts with a specific letter:

obnam backup -r /media/backups/tomjon-repo ~ \
--exclude ~/Downloads/'[^b-zB-Z].*\.mp4$'

Continue allowing more and more videos until they’ve all been backed up.

5.9 De-duplication

Obnam de-duplicates the data it backs up, across all files in all generations for
all clients sharing the repository. It does this by breaking up all file data into
bits called chunks. Every time Obnam reads a file and gets a chunk together, it
looks into the backup repository to see if an identical chunk already exists. If it
does, Obnam doesn’t need to upload the chunk, saving space, bandwidth, and
time.
De-duplication in Obnam is useful in several situations:

28 CHAPTER 5. BACKING UP

• When you have two identical files, obviously. They might have different
names, and be in different directories, but contain the same data.

• When a file keeps growing, but all the new data is added at the end. This
is typical for log files, for example. If the leading chunks are unmodified,
only the new data needs to be backed up.

• When a file or directory is renamed or moved. If you decide that the
English name for the Photos directory is annoying and you want to use the
Finnish Valokuvat instead, you can rename that in an instant. However,
without de-duplication, you then have to backup all your photos again.

• When all a team works on the same things, and everyone has copies of the
same files, the backup repository only needs one copy of each file, rather
than one per team member.

De-duplication in Obnam isn’t perfect. The granularity of finding duplicate data
is quite coarse (see the --chunk-size setting), and so Obnam often doesn’t find
duplication when it exists, when the changes are small.

De-duplication isn’t useful in the following scenarios:

• A file changes such that things move around within the file. The (current)
Obnam de-duplication is based on non-overlapping chunks from the be-
ginning of a file. If some data is inserted, Obnam won’t notice that the
chunks have shifted around. This can happen, for example, for disk or ISO
images.

• Files with duplicate data that is not on a chunk boundary. For example,
emails with large attachments. Each email recipient gets different Received
headers, which shifts the body and attachments by different amounts. As
a result, Obnam won’t notice the duplication.

• Data in compressed files, such as .zip or .tar.xz files. Obnam doesn’t
know about the file compression, and only sees the compressed version of
the data. Thus, Obnam won’d de-duplicate it.

A future version of Obnam will hopefully improve the de-duplication algorithms.
If you see this optimistic paragraph in a version of Obnam released in 2017 or
later, please notify the maintainers. Thank you.

5.10 De-duplication and safety against check-
sum collisions

This is a bit of a scary topic, but it would be dishonest to not discuss it at all.
Feel free to come back to this section later.

5.10. DE-DUPLICATION AND SAFETY AGAINST CHECKSUM COLLISIONS29

Obnam uses the MD5 checksum algorithm for recognising duplicate data chunks.
MD5 has a reputation for being unsafe: people have constructed files that are
different, but result in the same MD5 checksum. This is true. MD5 is not
considered safe for security critical applications.

Every checksum algorithm can have collisions. Changing Obnam to use, say,
SHA1, SHA2, or the as new SHA3 algorithm would not remove the chance of
collisions. It would reduce the chance of accidental collisions, but the chance of
those is already so small with MD5 that it can be disregarded. Or put in another
way, if you care about the chance of accidental MD5 collisions, you should be
caring about accidental SHA1, SHA2, or SHA3 collisions as well.

Apart from accidental collisions, there are two cases where you should worry
about checksum collisions (regardless of algorithm).

First, if you have an enemy who wishes to corrupt your backed up data, they
may replace some of the backed up data with other data that has the same
checksum. This way, when you restore, your data is corrupted without Obnam
noticing.

Second, if you’re into researching checksum collisions, you’re likely to have files
that cause checksum collisions, and in that case, if you restore after a catastrophe,
you probably want to get the files back intact, rather having Obnam confuse
one with the other.

To deal with these situations, Obnam has three de-duplication modes, set using
the --deduplicate setting:

• The default mode, fatalist, assumes checksum collisions do not happen.
This is a reasonable compromise between performance, safety, and security
for most people.

• The verify mode assumes checksum collisions do happen, and verifies
that the already backed up chunk is identical to the chunk to be backed up,
by comparing the actual data. Doing this requires downloading the chunk
from the backup repository, which can be quite slow, since checksums will
often match. This is a useful mode if you have very fast access to the
backup repository, and want to de-duplicate, such as when the backup
repository is on a locally connected hard drive.

• The never mode turns off de-duplication completely. This is useful if you’re
worried about checksum collisions, and do not require de-duplication.

There is, unfortunately, no way to get both de-duplication that is invulnerable to
checksum collision and is fast even when accessing the backup repository is slow.
The only way to be invulnerable is to compare the data, and if downloading the
data from the repository is slow, then the comparison will take significant time.

30 CHAPTER 5. BACKING UP

5.11 Locking

Multiple clients can share a repository, and to prevent them from trampling on
each other, they lock parts of the repository while working. The “Sharing a
repository between multiple clients” chapter will discuss this in more detail.

If Obnam terminates abruptly, even if there’s only one client ever using the
repository, the lock may stay around and prevent that one client for making new
backups. The termination may be due to the network connection breaking, or
due to a bug in Obnam. It can also happen if Obnam is interrupted by the user
before it’s finished.

The Obnam command force-lock deals with this situation. It is dangerous,
though. If you force open a lock that is in active use by any running Obnam
instance, on any client machine using that repository, there will likely to be some
stepping of toes. The result may, in extreme cases, even result in repository
corruption. So be careful.

If you’ve decided you can safely do it, this is an example of how to do it:

obnam -r /media/backups/tomjon-repo force-lock

It is not currently possibly to only break locks related to one client.

5.12 Consistency of live data

Making a backup can take a good while. While the backup is running, the
filesystem may change. This leads to the snapshot of data Obnam presents as a
backup generation being internally inconsistent. For example, before a backup
you might have two files, A and B, which need to be kept in sync. You run a
backup, and while it’s happening, you change A, and then B. However, you’re
unlucky, and Obnam manages to backup A before you save your changes, and B
after you save changes to that. The backup generation now has versions of A
and B that are not synchronised. This is bad.

This can be dealt with in various ways, depending on the circumstances. Here’s
a few:

• The Logical Volume Manager (LVM) provides snapshots. You can set up
your backups so that they first create a snapshot of each logical volume to
be backed up, run the backup, and delete the snapshot afterwards. This
prevents anyone from modifying the files in the snapshot, but allows normal
use to continue while the backup happens.

• A similar thing can be done using the btrfs filesystem and its subvolumes.

5.12. CONSISTENCY OF LIVE DATA 31

• You can shut down the system, reboot it into single user mode, and run
the backup, before rebooting back into normal mode. This is not a good
way to do it, but it is the safest way to get a consistent snapshot of the
filesystem.

Note that filesystem level snapshots can’t really guarantee a consistent view of
the live data. An application may be in the middle of writing a file, or set of files,
when the snapshot is being made. To some extent this indicates an application
bug, but knowing that doesn’t let you sleep better.

Usually, though, most systems have enough idle time that a consistent backup
snapshot can happen during that time. For a laptop, for example, a backup can
be run while the user is elsewhere, instead of actively using the machine.

Part of your backup verification suite should check that the data in a backup
generation is internally consistent, if that can be done. Otherwise, you’ll either
have to analyse the applications you use, or trust they’re not too buggy.

If you didn’t understand this section, don’t worry and be happy and sleep well.

32 CHAPTER 5. BACKING UP

Chapter 6

Restoring from backups

The worst has happened! Your cat got confused between its litter box and your
hard drive! Your goat deleted your most important document ever! Woe be you!

Let’s stay calm. This is why you have backups. There’s no need for exclamation
marks. Take a deep breath, have a cup of tea, and all will be well.

There’s two different approaches for restoring data with Obnam. One relies on a
FUSE filesystem, which is a very nice piece of technology that allows Obnam to
let you view your backups as just another directory. It is the preferred way, but
it is not always available, so Obnam also provides a more primitive, less easy to
use method.

6.1 Oh no! It’s all FUSEd together

The obnam mount command lets you look at your backups as if they were just
another directory. This requires that you have FUSE setup. See the installation
chapter for details on that. Most modern Linux desktops have this out of the
box.

mkdir ~/backups
obnam mount --to ~/backups

Run the above command, and then look at the ~/backups directory. You’ll see
something like this:

$ ls -l ~/backups
total 12
drwxr-xr-x 24 root root 4096 Feb 11 21:41 2

33

34 CHAPTER 6. RESTORING FROM BACKUPS

drwxr-xr-x 24 root root 4096 Feb 11 21:41 5
lrwxr-xr-x 24 root root 4096 Feb 11 21:41 latest -> 5
$

Each directory in ~/backups is a backup generation, named after the genera-
tion identifier Obnam invents. The latest symbolic link points at the latest
generation.

After this, you can restore a single file very easily:

cp ~/backups/latest/home/tomjon/Documents/iloveyou.txt ~/restored.txt

You can copy any files you want from the ~/backups directory, from any genera-
tion, or all of them if you want to. You can look at files directly, before copying
them out, too.

less ~/backups/2/home/tomjon/Documents/iloveyou.txt

This is an easy way to make sure you find the right version instead of just the
latest one.

You can’t delete anything in ~/backups. That directory is read-only, and you
can’t accidentally, or on purpose, delete or modify anything there. This is
intentional: the obnam mount command is meant to be a safe way for you to
look at your backups, not something you need to be careful about.

Once you’re done looking at your backups, you can un-mount the repository:

fusermount -u ~/backups

In addition to doing these things from the command line, you can, of course, use
your favourite file manager (graphical or textual) to look at your backed up files.
The mounting and un-mounting (depending on your desktop setup) may need
to be done on the command line.

6.2 Restoring without FUSE

When obnam mount isn’t available, you can do restores directly with just Obnam.
Use obnam generations and obnam ls to find the right generation to restore,
and then run a command like this:

obnam restore --to /tmp/tomjon-restored /home/tomjon/Documents

6.3. AN ACTUAL EXAMPLE OF A RESTORATION 35

This would restore just the indicated directory. If you don’t tell Obnam what
to restore, it’ll restore everything in the latest generation. You can choose a
different generation with --generation:

obnam restore --to /tmp/tomjon-restored --generation 2

Note that you can’t restore to a directory that already exists. This is to prevent
you from accidentally overwriting your live data with restored files. If you do
want replace your live data with restored files, you should restore to a temporary
location first, and then move the files to where you want them to be.

The file or directory you want to restore must be specified using an absolute
path, i.e., starting from / and not relative to the current directory.

6.3 An actual example of a restoration

I had a corrupted gnus file, and this is how I restored it from backup.

obnam --config=/home/foobar/cron/conf/obnam.conf generations>~/cron/upload/obgen.txt

This copies all generations for the main obnam backup to obgen.txt, and this is
part of that file.

1207586 2014-08-25 08:00:43 .. 2014-08-25 08:08:24 (385163 files, 175029819657 bytes)
1208367 2014-08-25 12:00:42 .. 2014-08-25 12:08:31 (385965 files, 175057598863 bytes)
1209313 2014-08-25 16:00:12 .. 2014-08-25 16:07:33 (386537 files, 175076976590 bytes)
1210254 2014-08-25 20:00:15 .. 2014-08-25 20:09:41 (386896 files, 175086483254 bytes)

And I decided to restore from generation 1208367.

This is the actual restore command.

obnam --config=/home/foobar/cron/conf/obnam.conf --generation=1208367 restore ~/News/rss/nnrss.el --to=/home/foobar/cron/upload/

This restores ‘nnrss.el’ to ~/cron/upload/ from where I was able to copy it back
to its proper place in ~/News/rss/

Obviously you replace your user-name for foobar.

36 CHAPTER 6. RESTORING FROM BACKUPS

6.4 Practice makes prestores painless

You should practice doing restores. This makes you trust your backups more,
and lets you be calmer if disaster were to strike. (In fancier terms, you should
test your disaster recovery plan.)

Do a trial restore of a few files, or all files, until you’re sure you know how to
do that. Then do it again, from time to time, to be sure your backups still
work. It’s much less frightening to do a real restore, when data has actually
gone missing, if you’ve done it before.

In extreme cases, particularly if you’re an Obnam developer, you perhaps format
your hard drive and then do complete restore, just so you know you can. If
you’re not an Obnam developer, this is perhaps a bit extreme: at least use a
separate hard drive instead of your normal one.

Chapter 7

Forgetting old backup
generations

Every time you make a backup, your backup repository grows in size. To avoid
overflowing all available storage, you need to get rid of some old backups. That’s
a bit of a dilemma, of course: you make backups in order to not lose data and
now you have to do exactly that.

Obnam uses the term “forget” about removing a backup generation. You can
specify which generation to remove manually, by generation identifier, or you
can have a schedule to forget them automatically.

To forget a specific generation:

obnam forget 2

(This example assumes you have a configuration file that Obnam finds auto-
matically, and that you don’t need to specify things like repository location or
encryption on the command line.)

You can forget any individual generation. Thanks to the way Obnam treats
every generation as an independent snapshot (except it’s not really a full backup
every time), you don’t have to worry about the distinctions between a full and
incremental backup.

Forgetting backups manually is tedious, and you probably want to use a schedule
to have Obnam automatically pick the generations to forget. A common type of
schedule is something like this:

• keep one backup for each day for the past week
• keep one backup for each week for the past three months

37

38 CHAPTER 7. FORGETTING OLD BACKUP GENERATIONS

• keep one backup for each month for the past two years
• keep one backup for each year for the past fifty seven years

Obnam uses the --keep setting to specify a schedule. The setting for the above
schedule would look like this:

--keep 7d,15w,24m,57y

This isn’t an exact match, due to the unfortunate ambiguity of how long a month
is in weeks, but it’s close enough. The setting “7d” is interpreted as “the last
backup of each calendar day for the last seven days on which backups were made”.
Similarly for the other parts of the schedule. See the “Obnam configuration files
and settings” chapter for exact details.

The schedule picks a set of generations to keep. Everything else gets forgotten.

7.1 Choosing a schedule for forgetting genera-
tions

The schedule for retiring backup generations is a bit of a guessing game, just
like backups in general. If you could reliably tell the future, you’d know all the
disasters that threaten your data, and you could backup only the things that
would otherwise be lost in the future.

In this reality, alas, you have to guess. You need to think about what risks you’re
facing (or your data is), and how much backup storage space you’re willing to
spend on protecting against them.

• Are you afraid of your hard drive suddenly failing in a very spectacular
way, such as by catching fire or being stolen? If so, you really only need
one very recent backup to cover against that.

• Do you worry about your hard drive, or filesystem, or your application
programs, or you yourself, slowly corrupting your data over a longer period
of time? How long will it take you to find that out? You need a backup
history that lasts longer than it takes for you to detect slow corruption.

• Likewise with accidental deletion of files. How long will it take for you to
notice? That’s how long the backup history should be, at minimum.

There’s other criteria as well. For example, would you like to see, in fifty years,
how your files are laid out today? If so, you need a fifty-year-old backup, plus
perhaps a backup from each year, if you want to compare how things were each
year in between. With increasing storage space and nice de-duplication features,
this isn’t quite as expensive as it might be.

7.1. CHOOSING A SCHEDULE FOR FORGETTING GENERATIONS 39

There is no one schedule that fits everyone’s needs and wants. You have to
decide for yourself. That’s why the default in Obnam is to keep everything
forever. It’s not Obnam’s duty to decide that you should not keep this or that
backup generation.

40 CHAPTER 7. FORGETTING OLD BACKUP GENERATIONS

Chapter 8

Verifying backups

It’s 9 in the evening. Do you know if your backups work? Do you know when
you last made a successful backup of all of your data? Do you know whether
you can restore from that backup? If not, how well can you sleep?

You should verify your backups, and do it regularly, not just when you first set
up the backup system. Verification means doing whatever you need to do to
ensure all of your precious data has been backed up and can be correctly restored
from the backups.

The simplest way to do that is to restore all your data, and compare it with
your live data, and note any differences. That requires you have enough free
disk space to restore everything, but it’s almost the only way to be really sure.

It’s also a great way to ensure the restoring actually works. If you don’t test
that, don’t expect it’ll work when needed.

If you have the disk space to do a complete restore, doing so is a great way to
exercise your disaster recovery process in general. Here’s one way of doing it:

• On your main computer, do a backup.
• On a second computer, perhaps borrowed for this, restore all your data,

without using your main computer at all.
• Start using the restored data as your live data. Do real work, and do all

the things you normally do. Pretend your main computer was eaten by
your pet shark.

• If you notice something missing, or being corrupt, or being too old, get
the files from your main computer, and fix your backup process so that
the next time you won’t have that problem.

How often should you do that? That, again, depends on how you feel about
your data, and how much you trust your backup tools and processes. If it’s

41

42 CHAPTER 8. VERIFYING BACKUPS

really important that you can recover from a disaster, you need to verify more
frequently. If data loss is merely inconvenient and not disastrous in a life changing
way, you can verify less often.

In addition to restoring data, Obnam provides two other ways to verify your
backups:

• obnam verify is like obnam restore, except it compares the backed up
data with live data, and reports any differences. This requires you to trust
that Obnam does the verification correctly.

• obnam mount lets you access your backed up data as if it were just a
directory. You can then use any tool you trust to compare the backed
up data with live data. This is very much like doing a restore, since the
comparison tool will have to extract all the data and metadata from the
backup; it just doesn’t write it out.

Both of these approaches have the problem that they compare a backup with
live data, and the live data may have changed after the backup was made. You
need to verify all differences manually, and if the live data changes frequently,
the can be a large number of wrong reports.

Chapter 9

Sharing a repository
between multiple clients

Obnam lets you backup several computers to the same repository. Each client
is identified by a name, which defaults to the system hostname: the name you
get when you run the hostname command. You can also set the name explicitly,
using the --client-name setting in Obnam.
All the clients sharing a repository share the file content data (the chunks), and
can de-duplicate across clients. Each client has its own backup generations, and
those are fully independent from other clients. You can, for example, forget any
generations you want for one client, and it doesn’t affect the generations or any
backed up data for any other client.
Obnam takes care of locking automatically so you can run Obnam on each client
without having to arrange it so that you only run it on one client at a time.
A caveat of sharing a repository is that any client has access to all chunks, and
can delete any other client from the repository. This means you should only
share a repository amongst clients in the same security domain: all clients should
be trusted equally. If one client gets hacked, then the intruder has access to all
the data in the repository, and can delete the backups of all the clients using
that repository.
To share a repository amongst clients you need to do the following:

• Set a unique name for each client. It needs to be unique within the
repository.

• Arrange for each client to have access to the repository.

That’s all.
To see what clients are using a repository, use this:

43

44CHAPTER 9. SHARING A REPOSITORY BETWEEN MULTIPLE CLIENTS

obnam clients

There is currently no way to remove a client from a repository, unless you’re
using encryption. This is to be considered a bug in Obnam, and will be fixed at a
future time. After that, a time machine will be developed so that this paragraph
will have never existed.

Chapter 10

Using encryption

Obnam allows you to encrypt your backups. This chapter discusses why and
how to do that.

10.1 You don’t admit to being a spy, so isn’t
encryption unnecessary?

You’re not the only one who cares about your data. A variety of governments,
corporations, criminals, and overly curious snoopers und lookenpeepers may
also be interested. (It’s sometimes hard to tell them apart.) They might be
interested in it to data in order to find evidence against you, blackmail you, or
just curious about what you’re talking about with your other friends.

They might be interested in your data from a statistical point of view, and don’t
particularly care about your specifically. Or they might be interested only in
you.

Instead of reading your files and e-mail, or looking at your photos and videos,
they might be interested in preventing your access to them, or to destroy your
data. They might even want to corrupt your data, perhaps by planting child
porn in your photo archive.

You protect your computer as well as you can to prevent these and other bad
things from happening. You need to protect your backups with equal care.

If you back up to a USB drive, you should probably make the drive be encrypted.
Likewise, if you back up to online storage. There are many forms of encryption,
and I’m unqualified to give advice on this, but any of the common, modern ones
should suffice except for quite determined attackers.

45

https://en.wikipedia.org/wiki/Blinkenlights

46 CHAPTER 10. USING ENCRYPTION

Instead of, or in addition to, encryption, you could ensure the physical security
of your backup storage. Keep the USB drive in a safe, perhaps, or a safe deposit
box.

The multiple backups you need to protect yourself against earthquakes, floods,
and roving gangs of tricycle-riding clowns, are also useful against attackers. They
might corrupt your live data, and the backups at your home, but probably won’t
be able to touch the USB drive encased in concrete and buried in the ground at
a secret place only you know about.

The other side of the coin is that you might want to, or need to, ensure others do
have access to your backed up data. For example, if the clown gang kidnaps you,
your spouse might need access to you backups to be able to contact your MI6
handler to ask them to rescue you. Arranging safe access to (some) backups is
an interesting problem to which there are various solutions. You could give your
spouse the encryption passphrase, or give the passphrase to a trusted friend or
your lawyer. You could also use something like libgfshare to escrow encryption
keys more safely.

10.2 How Obnam encryption works

An Obnam repository contains several directories, for different types of data.

• A per-client directory for each client, for data that is only relevant to that
client, such as the generations to that client.

• A directory for the list of clients.
• A directory for all the chunks of file content data, plus additional directories

used for de-duplicating chunks.

The per-client directory is encrypted so that only that client can access it. This
means that only the client itself can see its generations, and the files in each
generation.

The shared directories (client list, chunks) is encrypted so that all clients can use
them. This allows clients to share chunks, so that de-duplication works across
all clients.

This encryption scheme assumes that all clients sharing a repository trust each
other, and that it’s OK for them to be able to read all the chunk data they
want. The encryption does not protect siblings from reading each others e-mail
from the backup repository, for example, but it does protect them against their
parents, if the parents don’t have a suitable encryption key.

In addition to the encryption keys for a client you can add additional keys. These
keys can also access the backup repository. For example, the parents’ key might

http://www.digital-scurf.org/software/libgfshare

10.3. SETTING UP OBNAM TO USE ENCRYPTION 47

be added to the repository so that if need be, they could restore any child’s data,
even if the child had lost their own encryption key.

In a corporate setting, the a backup administrator key might be added so that
the administrator can, for example, verify the integrity of the repository, or to
access data of an employee who has won the lottery and isn’t currently available
due to bad Internet access to the Moon.

Such additional keys can be added either for any one client, or to all clients.

10.3 Setting up Obnam to use encryption

Obnam uses PGP keys, specifically the GNU Privacy Guard (GnuPG, gpg)
implementation of them. To use encrypted backups, you need to first create a
PGP key pair for yourself. See the GnuPG documentation for instructions.

Once you have a working GnuPG setup and a key pair (consisting of a public
key and a secret key), you need to find the key identifier for them. Run the
following command and pick your key from the list.

gpg --list-keys

The output will look something like this:

pub 4096R/5E8511F9 2009-07-22
uid Lars Wirzenius <liw@liw.fi>
sub 2048R/9BE35AE6 2011-08-05

That’s the output for one key; there may be many keys. The key identifier is
on the line staring with pub, in the second column after the slash. Above, it’s
5E8511F9.

In the rest of the examples in this chapter, we’ll assume your key identifier is
CAFEFACE.

To set up encryption, use the --encrypt-with setting:

[config]
encrypt-with = CAFEFACE

That’s all.

Note that a repository should be fully encrypted or not encrypted at all, and
that you can’t switch afterwards. If you change your mind about whether to
use encryption at all, you’ll need to start a new repository. All clients sharing a
repository need to be using encryption, or else none of them may use encryption.

http://www.gnupg.org/documentation/

48 CHAPTER 10. USING ENCRYPTION

If you mix encryption or cleartext backups, the error messages may prove to be
confusing.

Obnam will automatically encrypt all the files it writes to the backup repository,
and de-crypt them when needed. As long as you only have one encryption key
for each client, and don’t add additional keys, Obnam will take care of adding
the right keys to the right places automatically.

10.4 Checking if a repository uses encryption

There is no direct way with Obnam to check if a repository uses encryption.
However, you can check that manually: if your repository contains the file
clientlist/key, the repository is encrypted.

10.5 FIXME: Managing encryption keys in a
repository

This section discusses how to manage encryption keys in a repository: how to
add additional keys for each toplevel, and how to change keys for a client. It also
shows how to check what keys are being used, and what access each key has.

Chapter 11

Other stuff

This chapter discusses topics that do not warrant a chapter of their own, such
as compressing backups and running Obnam from cron.

11.1 k4dirstat cache files

k4dirstat is a utility for visualising the disk space used by a directory tree.
Obnam’s kdirstat command can be used to produce a listing of the contents
of a generation in a format which can be read by k4dirstat using File, Read
Cache File from the k4dirstat menu. e.g.

$ obnam kdirstat --client CLIENT --generation GENID > CLIENT.kdirstat.cache
$ gzip -v9 CLIENT.kdirstat.cache # OPTIONAL

CLIENT.kdirstat.cache[.gz] can now be read by k4dirstat.

49

https://bitbucket.org/jeromerobert/k4dirstat/wiki/Home

50 CHAPTER 11. OTHER STUFF

Chapter 12

Case studies

This chapter goes through, in some detail, some typical use cases for backups.
For case, it discusses the data being backed up, and explains choices of backup
strategy, storage, etc. Some case studies:

• Single laptop user, typical data of documents, photos, music, backing up
to a USB hard drive.

• A VPS or similar server, with web pages, e-mail, and maybe other data,
backed up to another server.

• A small company with a number of laptops and desktops, a local file server,
a rented co-lo server, backing up to a rented server in a co-lo and to a
rotated set of large USB drives.

• Restoring from a complete disaster, where all local computers and storage
media are destroyed, but there is an off-site backup that is intact.

51

52 CHAPTER 12. CASE STUDIES

Chapter 13

Troubleshooting

This chapter discusses how to debug problems with Obnam. It covers things
such as log files, various levels of logging and tracing, and common problems
with Obnam use. It also explains what things go where in an Obnam backup
repository.

13.1 Turning on full logging

Obnam can write a log file. There are several options controlling that. Knowing
these can help get out the most information when there’s a problem that needs
to be investigated.

• --log=obnam.log tells Obnam where to log. The log is a simple text file.
• --log-level=debug tells Obnam to log at the most detailed level. The

default level is info, which excludes most debug information.
• --trace=obnamlib --trace=larch tells Obnam to log additional debug

information. The two arguments match all filenames in Obnam and the
Larch library Obnam uses. This additional information is mostly useful to
someone who can read and understand the program source code.

Note that these settings can make log files be quite large, in the order of tens of
megabytes. The size depends on how many files and how much data your live
data has.

13.2 Reporting problems (“bugs”)

If you have a problem with Obnam, and you want to report it (please do!),
including the following information is helpful and makes it easier to figure out

53

54 CHAPTER 13. TROUBLESHOOTING

what the problem is.

• You should report problems to the obnam-support@obnam.org mailing
list. This is a publicly archived mailing list where various people help
others use Obnam.

If you respond to messages on obnam-support, always keep the list in the cc
list. This means others will see the response, and there’s a chance that they
can help you better than the particular person you’re responding to. Also, the
archived discussion may be helpful to later readers, perhaps years afterwards.

• What is the problem? What did you try to achieve? What actually
happened?

• The version of Obnam and Larch you’re using, and how you installed it.

– On Debian, run dpkg -l obnam python-larch on the command line
and include the output.

• The exact command line you used. Copy-paste it instead of typing it again
into the mail. Sometimes the problem can be hidden if you don’t copy the
command line exactly. Also, copying by typing is boring, and we should
avoid boring things in life.

• If there’s an error message, copy-paste that into the mail.

• The output of obnam --dump-config, which includes the full configuration.
Include it as an attachment to your mail to obnam-support. If you have
some secret information, such as filenames or hostnames, you can replace
those with XXXX.

• If you can reproduce the problem while running with --log-level=debug,
--log=obnam.log and --trace=obnamlib --trace=larch options, in-
clude a suitable amount from the end of the log file. The suitable amount
may depend on the situation, but if you give the last two hundred lines,
and it’s not enough, we’ll ask for more. Again, feel free to replace any
sensitive filenames, etc, with XXXX.

• The output of the env command, in the same terminal window in which
you ran Obnam. (Again, as an attachment.)

• If your bug is about performance, please run Obnam under profiling,
and attach the profiling file. To run Obnam under profiling, install the
Python profile (python-profiler package in Debian/Ubuntu), and set
the OBNAM_PROFILE environment variable to the name of the file with the
profiling output (that’s the file you should send by mail). For example:
OBNAM_PROFILE=obnam.prof obnam backup would run the backup under
the profiler, and write the result to obnam.prof.

Thank you for your help in making Obnam better.

Chapter 14

Obnam configuration files
and settings

This chapter discusses Obnam configuration files: where they are, what they
contain, and how they are used.

14.1 Where is my configuration?

Obnam looks for its configuration files in a number of places:

• /etc/obnam.conf
• /etc/obnam/*.conf
• ~/.obnam.conf
• ~/.config/obnam/*.conf

Note that in /etc/obnam and ~/.config/obnam, all files that have a .conf
suffix are loaded, in “asciibetical” order, which is like alphabetical, but based on
character codes rather than what humans understand, but unlike alphabetical
isn’t dependent on the language being used.

Any files in the list above may or may not exist. If it exists, it is read, and then
the next file is read. A setting in one file can be overridden by a later file, if it is
set there as well. For example, /etc/obnam.conf might set log-level to INFO,
but ~/.obnam.conf may then set it to DEBUG, if a user wants more detailed log
files.

The Obnam configuration files in /etc apply to everyone who runs Obnam on
that machine. This is important: they are not just for when root runs Obnam.

55

56 CHAPTER 14. OBNAM CONFIGURATION FILES AND SETTINGS

If you want to have several Obnam configurations, for example for different
backup repositories, you need to name or place the files so they aren’t on the
list above. For example:

• /etc/obnam/system-backup.profile
• ~/.config/obnam/online.profile
• ~/.config/obnam/usbdrive.profile

You would then need to specify that file for Obnam to use it:

obnam --config ~/.config/obnam/usbdrive.profile`

If you want to not be affected by any configuration files, except the ones you
specify explicitly, you need to also use the --no-default-config option:

obnam --no-default-config --config ~/.obnam-is-fun.conf

Command line options override values from configuration files.

14.2 Configuration file syntax

Obnam configuration files use the INI file syntax, specifically the variant imple-
mented by the Python ConfigParser library. They look like this:

[config]
log-level = debug
log = /var/log/obnam.log
encrypt-with = CAFEBEEF
root = /
one-file-system = yes

Names of configuration variables are the same as the corresponding command
line options. If --foo is the option, then the variable in the file is foo. Any
command line option --foo=bar can be used in a configuration file as foo =
bar. There’s are exceptions to this (--no-default-config, --config, --help,
and a few others), but they’re all things you wouldn’t put in a configuration file
anyway.

Every option, or setting, has a type. Mostly this doesn’t matter, unless you give
it a value that isn’t suitable. The two important exceptions to this are:

https://en.wikipedia.org/wiki/INI_file
http://docs.python.org/2/library/configparser.html

14.3. CHECKING WHAT MY CONFIGURATION IS 57

• Boolean or yes/no or on/off settings. For example, --exclude-caches is a
setting that is either turned on (when the option is used) or off (when it’s
not used). For every Boolean setting --foo, there is an option --no-foo.
In a configuration files, foo is turned on by setting it to yes or true, and
off by setting it to no or false.

• Some settings can be lists of values, such as --exclude. You can use
--exclude as many times as you want, each time a new exclusion pattern
is added, rather than replacing the previous patterns. In a configuration file,
you would write all the values at once, separated by commas and optional
spaces: for example, exclude = foo, bar, baz. In a configuration file,
the previous list of values is replaced entirely rather than added to.

For a more detailed explanation of Obnam configuration file syntax, see the
cliapp(5) manual page on your system, or cliapp man page on the WWW.

14.3 Checking what my configuration is

Obnam can read configuration files from a number of places, and it can be tricky
to figure out what the actual configuration is. The --dump-config option helps
here.

obnam --config ~/.obnam.fun --exclude-caches --dump-config

The option will tell Obnam to write out (to the standard output) a configuration
file that captures every setting, and reporting the value that it would have if
--dump-config weren’t used.

This is a good way to see what the current settings are and also as a starting
point if you want to make a configuration file from scratch.

14.4 Finding out all the configuration settings

This manual does not yet have a list of all the settings, and their explanation.
Obnam provides built-in help (run obnam --help) and a manual page auto-
matically generated from the built-in help (run man obnam or see obnam man
page). Some day, this chapter will include an automatically generated section
that explains each setting. Until then, you’re free to point fingers at Obnam’s
author and giggle at his laziness.

http://code.liw.fi/cliapp/cliapp.5.txt
http://code.liw.fi/obnam/obnam.1.txt
http://code.liw.fi/obnam/obnam.1.txt

58 CHAPTER 14. OBNAM CONFIGURATION FILES AND SETTINGS

Chapter 15

The backup repository
internals

This chapter describes what the Obnam backup repository looks like. Unless
you’re interested in that, you can skip that entirely.

For now, look at the Obnam website at http://obnam.org/development/.

15.1 Repository file permissions

Obnam sets the permissions of all files it creates in the repository such that only
the owner of the files can read or write them. (Technically, 0600 for files, 0700
for directories.)

This is to prevent backups from leaking because someone else has read access to
the repository. There is no setting in Obnam to control this.

59

http://obnam.org/development/

60 CHAPTER 15. THE BACKUP REPOSITORY INTERNALS

Chapter 16

Performance tuning

This chapter discusses ways to tune Obnam performance for various situations.
It covers the various options that can affect CPU and memory consumption, as
well as ways to experiment to find a good set of values.

See http://obnam.org/faq/tuning/ for a start.

16.1 Running Obnam under the Python profiler

A profiler is a program that measures where another program spends its time.
This can be very useful for finding out why the other program is slow.

Obnam can easily be run under the Python profiler. You need to have the
profiler installed. Check with your operating system or Python installation how
to achieve that. To see if you have it installed, run the following command on
the command line:

python -c 'import cProfile'

If this outputs nothing, all is well. If it outputs an error such as the following,
you have not got the profiler installed:

Traceback (most recent call last):
File "<string>", line 1, in <module>

ImportError: No module named cProfiler

Once you have the profiler installed, run Obnam like this:

OBNAM_PROFILE=backup.prof obnam backup

61

http://obnam.org/faq/tuning/

62 CHAPTER 16. PERFORMANCE TUNING

This will cause the profiling data to be written to the file backup.prof. You
can do this for any Obnam command, and write it to any file.

The profiling data is in binary form. Obnam comes with a little helper program
to transform it to a human-readable form:

obnam-viewprof backup.prof | less

If you run the above command, you’ll see that the humans to whom this is
readable are programmers and circus clowns. If you can understand the output,
great! If not, it’s still useful to send that to the Obnam developers to report a
performance problem.

Chapter 17

Participating in Obnam
development

The Obnam project is quite small, as far as software projects go. There is one
main developer, plus a few others who sometimes help out. It would be nice to
have more people involved, and this chapter is an introduction for that.
It is a common misunderstanding that only code matters in a software project.
On the contrary, without a number of other things, code is useless, particularly
so in a free software project, including Obnam. Examples of necessary things in
almost any serious software project:

• writing and updating documentation, which includes manuals and websites
• translating documentation, and the software’s user interface
• providing support to users with questions or problems
• reporting actionable bugs
• processing bug reports: asking for clarifications, reproducing the reported

problem, finding the cause of the problem, and developing a suitable fix
• porting the software to various platforms, including different operating

systems, different versions of said operating systems, different versions of
the languages and libraries the software uses, different hardware, etc

• quality assurance: developing and performing manual and automated tests
and benchmarks, and analysing results

• hosting and operating web sites, mailing lists, IRC channels, other commu-
nication channels

• handling project governance, which includes dealing with conflicts between
people

• managing the project in general, including making sure things don’t stall
• finally, writing the code itself, which is a necessary, but not sufficient part

of having a project that people other than the developers can use it

63

64 CHAPTER 17. PARTICIPATING IN OBNAM DEVELOPMENT

This list is insufficient; additions are welcome. See the rest of this chapter for
suggestions on how to contribute to the list.

17.1 Helping support users

Perhaps the easiest way to participate in the project is to help support other
users of the software. This is easy, and doesn’t necessarily require more than
being able to use the software oneself. Yet it is quite valuable, as it frees others
from doing that. Even with the highest quality, easiest to use software, there’s
always some need for user support:

• Code can be wrong, and a user may experience this. Analysing the situation
and isolating the bug is an important part of the software development
process.

• Documentation can be wrong, or out of date, or written in anticipation of
a feature that doesn’t exist yet.

• Some people have misunderstandings, due to whatever reason, which leads
them to have problems when using the software. Figuring out what the
actual problem and its cause are can be a time consuming process, but often
does not require any special skills, except for patience and a willingness to
ask a lot of questions.

In the Obnam project, the best way to help out with this is to subscribe to the
obnam-support@obnam.org mailing list or join the #obnam (irc.oftc.net) IRC
channel, and start answering questions.

It’s OK to not be an expert. Helping others is a great way to learn. If you
make it clear you’re not an expert, but are trying to help anyway, usually makes
others appreciate your help even more.

Some suggestions on doing support work:

• Try to understand what the person needing help is actually trying to
achieve, rather than answering their literal question. Better yet, do both.

• You don’t need to have the solution to respond. A quick, but incomplete
answer that nevertheless moves the discussion forward is helpful. Even
if you don’t know the correct answer, it’s good to ask a question that
results in the person needing help providing more information, or finding
the solution themselves, or inspires someone else to discover the solution,

• Always be helpful and polite. Never respond with things such as “read the
fine manual” (or RTFM for short). It’s OK to say that the answer is in
the manual, but then provide a link, and possibly also a quote.

17.2. WRITING AND UPDATING DOCUMENTATION 65

• People who need help are often frustrated, and sometimes desperate,
because they’ve tried and tried to solve the problem on their own, but
have failed. This can leak through their messages. Ignore it, unless they
actually become impolite, at which point its probably best to escalate the
situation. Avoid getting into a quarrel about who’s right or who said what
and what did they mean by it.

• It’s better to not respond at all, than respond while irritated, annoyed, or
angry. It’s more important for the project to maintain a polite and helpful
atmosphere in the long run than to solve any current technical problem.

In short, if you do your best to be polite, friendly, and helpful, go ahead and
respond.

17.2 Writing and updating documentation

The project has various kinds of documentation.

• The obnam.org website.
• The manual page.
• The manual (which is what you’re reading now).
• Various blog posts around the web.

Writing documentation is fairly easy. Updating it takes a bit more effort, since
it requires reviewing existing documentation to make sure it’s up to date. The
main goals of Obnam documentation are:

• Accuracy.
• Clarity.
• Completeness.
• A bit of dry humour in places.

Any help you can give here is most welcome.

• Read through existing documentation.
• If you find anything that’s wrong, inaccurate, incomplete, missing, or

unclear, send a note to the developer mailing list.
• If you can include a new wording, all the better. It’s not required.
• If you can provide an actual patch, perfect, since it makes it easiest to

incorporate your suggestion. Again, it’s not required.

66 CHAPTER 17. PARTICIPATING IN OBNAM DEVELOPMENT

You don’t need to be a good writer. As part of the process, others will review
what you send, and will point out anything they feel can be improved. For
example, suppose you notice that a paragraph in this manual is unclear, but you
don’t know what it actually should say. If you send a mail saying this, others
can then come up with a better wording.

17.3 Translating documentation

The Obnam manual and manual page are written in English, and have been
translated to German. More languages are most welcome.

The author of this manual is not particularly familiar with the process of
translation, and so wishes someone else would fill in this section.

The Obnam user interface is not currently translatable, and making it so will
require code changes. Helping make those code changes would be nice.

17.4 Developing the code

Assuming you already know how to program, it’s fairly straightforward to work
on the Obnam code base. At least it’s meant to be so: if you have trouble, please
ask and point out what’s unclear or wrong.

Check out the source from the git server, and read the README file for details
on how to get started, and how to run the automated test suite, and how to
send patches. See the website for some development documentation, including
explanations of the on-disk data structures.

Code changes that are not very trivial should be sent in a form that can be
handled by git. This can be actual patches sent to the mailing list, or a URL
from which changes can be merged.

17.5 Project governance

The Obnam project has a very informal form of governance: the founder of the
project, Lars Wirzenius, has all the power, and everyone else has no power. As
the project grows, this will change.

If there’s a social problem somewhere, for example someone is misbehaving, it’s
best to report it to Lars directly. If Lars is the problem, it’s best to call him out
directly.

Chapter 18

Appendix: Error messages

This appendix lists all Obnam error messages and their explanations. It is
possible you’ll see other error messages while running Obnam. These are not
listed here, as Obnam doesn’t know about them.

The errors are listed twice: briefly, in order of their unique error, and then more
fully, in alphabetical order.

18.1 By error code

• R018FCX ToplevelIsFileError
• R01F56X RepositorySettingMissingError
• R02C17X HardlinkError
• R0B15DX RepositoryGenerationDoesNotExist
• R0BE94X RepositoryClientNotLocked
• R0C79EX GpgError
• R0F22CX URLSchemeAlreadyRegisteredError
• R0FC21X SetMetadataError
• R169C6X MissingFilterError
• R173AEX NoFilterTagError
• R1A025X RepositoryClientKeyNotAllowed
• R1CA00X ClientDoesNotExistError
• R22E66X SizeSyntaxError
• R24424X RepositoryClientDoesNotExist
• R283A6X UnitNameError
• R2FA37X WrongNumberOfGenerationSettingsError
• R338F2X BackupRootMissingError
• R3B42AX WrongNumberOfGenerationsForVerify

67

68 CHAPTER 18. APPENDIX: ERROR MESSAGES

• R3E151X RepositoryFileDoesNotExistInGeneration
• R3E1C1X RestoreTargetNotEmpty
• R41CE6X RepositoryClientAlreadyExists
• R43272X RepositoryChunkDoesNotExist
• R45B50X DuplicatePeriodError
• R47416X WrongHostKeyError
• R4C3BCX BackupErrors
• R57207X RepositoryClientGenerationUnfinished
• R5914DX InvalidPortError
• R5F98AX NoHostKeyError
• R681AEX LockFail
• R6A098X RepositoryGenerationKeyNotAllowed
• R6C1C8X RepositoryClientListNotLocked
• R6EAF2X RepositoryClientLockingFailed
• R7137EX BagIdNotSetError
• R79699X RepositoryFileKeyNotAllowed
• R79ED6X BackupRootDoesNotExist
• R7B8D0X FileNotFoundError
• R826A1X UnknownVFSError
• R8AAC1X NoHostKeyOfWantedTypeError
• R8F974X RepositoryChunkIndexesLockingFailed
• R91CA1X ShowFirstGenerationError
• R9808DX ForgetPolicySyntaxError
• RA4F35X RootIsNotADirectory
• RA5942X WrongNumberOfGenerationsForDiffError
• RA7D64X UnknownRepositoryFormatWanted
• RA881CX RepositoryChunkContentNotInIndexes
• RA920EX NotARepository
• RABC26X FuseModuleNotFoundError
• RB1048X RepositoryClientListLockingFailed
• RB4324X GAImmutableError
• RB8E98X WrongURLSchemeError
• RB927BX SeparatorError
• RBF6DDX RepositoryAccessError
• RCB0CAX KeyAuthenticationError
• RCE08AX ObnamIOError
• RCEF5CX MallocError
• RD5FA4X ObnamSystemError
• RD6259X RestoreErrors
• RDF30DX Fail
• RE187FX RepositoryChunkIndexesNotLocked
• REFB32X RepositoryClientHasNoGenerations

18.2. BY NAME 69

• RF4EFDX UnknownRepositoryFormat

18.2 By name

BackupErrors (R4C3BCX) There were errors during the backup

BackupRootDoesNotExist (R79ED6X) Backup root does not exist or is not a
directory: {root}

BackupRootMissingError (R338F2X) No backup roots specified

BagIdNotSetError (R7137EX) Bag id not set: cannot append a blob (program-
ming error)

ClientDoesNotExistError (R1CA00X) Client {client} does not exist in reposi-
tory {repo}

DuplicatePeriodError (R45B50X) Forget policy may not duplicate period ({pe-
riod}): {policy}

Fail (RDF30DX) {filename}: {reason}

FileNotFoundError (R7B8D0X) FUSE: File not found: {filename}

ForgetPolicySyntaxError (R9808DX) Forget policy syntax error: {policy}

FuseModuleNotFoundError (RABC26X) Failed to load module “fuse”, try in-
stalling python-fuse

GAImmutableError (RB4324X) Attempt to modify an immutable GADirectory

GpgError (R0C79EX) gpg failed with exit code {returncode}: {stderr}

HardlinkError (R02C17X) Cannot hardlink on SFTP; sorry
This is due to a limitation in the Python paramiko library that Obnam
uses for SSH/SFTP access.

InvalidPortError (R5914DX) Invalid port number {port} in {url}: {error}

KeyAuthenticationError (RCB0CAX) Can’t authenticate to SSH server using
key

LockFail (R681AEX) Couldn’t create lock {lock_name}: {reason}

MallocError (RCEF5CX) malloc out of memory while calling {function}

MissingFilterError (R169C6X) Unknown filter tag: {tagname}

NoFilterTagError (R173AEX) No filter tag found

NoHostKeyError (R5F98AX) No known host key for {hostname}

70 CHAPTER 18. APPENDIX: ERROR MESSAGES

NoHostKeyOfWantedTypeError (R8AAC1X) No known type {key_type} host key
for {hostname}

NotARepository (RA920EX) {url} does not seem to be an Obnam repository

ObnamIOError (RCE08AX) I/O error: {filename}: {errno}: {strerror}

ObnamSystemError (RD5FA4X) System error: {filename}: {errno}: {strerror}

RepositoryAccessError (RBF6DDX) Repository does not exist or cannot be
accessed: {error}

RepositoryChunkContentNotInIndexes (RA881CX) Repository chunk indexes
do not contain content

RepositoryChunkDoesNotExist (R43272X) Repository doesn’t contain chunk
{chunk_id}. It is expected at {filename}

RepositoryChunkIndexesLockingFailed (R8F974X) Repository chunk
indexes are already locked

RepositoryChunkIndexesNotLocked (RE187FX) Repository chunk indexes are
not locked

RepositoryClientAlreadyExists (R41CE6X) Repository client {client_name}
already exists

RepositoryClientDoesNotExist (R24424X) Repository client {client_name}
does not exist

RepositoryClientGenerationUnfinished (R57207X) Cannot start new gener-
ation for {client_name}: previous one is not finished yet (programming
error)

RepositoryClientHasNoGenerations (REFB32X) Client {client_name} has no
generations

RepositoryClientKeyNotAllowed (R1A025X) Client {client_name} uses repos-
itory format {format} which does not allow the key {key_name} to be use
for clients

RepositoryClientListLockingFailed (RB1048X) Repository client list could
not be locked

RepositoryClientListNotLocked (R6C1C8X) Repository client list is not
locked

RepositoryClientLockingFailed (R6EAF2X) Repository client {client_name}
could not be locked

RepositoryClientNotLocked (R0BE94X) Repository client {client_name} is
not locked

18.2. BY NAME 71

RepositoryFileDoesNotExistInGeneration (R3E151X) Client {client_name},
generation {genspec} does not have file {filename}

RepositoryFileKeyNotAllowed (R79699X) Client {client_name} uses reposi-
tory format {format} which does not allow the key {key_name} to be use
for files

RepositoryGenerationDoesNotExist (R0B15DX) Cannot find requested gener-
ation {gen_id!r} for client {client_name}

RepositoryGenerationKeyNotAllowed (R6A098X) Client {client_name} uses
repository format {format} which does not allow the key {key_name} to
be used for generations

RepositorySettingMissingError (R01F56X) No –repository setting. You
need to specify it on the command line or a configuration file

RestoreErrors (RD6259X) There were errors when restoring
See previous error messages for details.

RestoreTargetNotEmpty (R3E1C1X) The restore –to directory ({to}) is not
empty.

RootIsNotADirectory (RA4F35X) {baseurl} is not a directory, but a VFS root
must be a directory

SeparatorError (RB927BX) Forget policy must have rules separated by commas,
see position {position}: {policy}

SetMetadataError (R0FC21X) {filename}: Couldn’t set metadata {metadata}:
{errno}: {strerror}

ShowFirstGenerationError (R91CA1X) Can’t show first generation. Use ‘ob-
nam ls’ instead

SizeSyntaxError (R22E66X) “{size}” is not a valid size

ToplevelIsFileError (R018FCX) File at repository root: {filename}

URLSchemeAlreadyRegisteredError (R0F22CX) VFS URL scheme {scheme}
already registered

UnitNameError (R283A6X) “{unit}” is not a valid unit

UnknownRepositoryFormat (RF4EFDX) Unknown format {format} at {url}

UnknownRepositoryFormatWanted (RA7D64X) Unknown format {format} re-
quested

UnknownVFSError (R826A1X) Unknown VFS type: {url}

72 CHAPTER 18. APPENDIX: ERROR MESSAGES

WrongHostKeyError (R47416X) SSH server {hostname} offered wrong public
key
Note that this may due to an obsolete host key in your “known hosts” file.
If so, use “ssh-key -R” to remove it. However, it can also be a sign that
someone is trying to hijack your connection to your server, and you should
be careful.

WrongNumberOfGenerationSettingsError (R2FA37X) The restore command
wants exactly one generation option

WrongNumberOfGenerationsForDiffError (RA5942X) Need one or two gener-
ations

WrongNumberOfGenerationsForVerify (R3B42AX) verify must be given exactly
one generation

WrongURLSchemeError (RB8E98X) SftpFS used with non-sftp URL: {url}

Chapter 19

SEE ALSO

This chapter gives pointers to more information about Obnam, backups, and
related things. For the time being, this is a very short list, but suggestions for
things to add to it are very much welcome.

• Obnam home page: http://obnam.org.

– There are short tutorials, download links, an FAQ, contact information,
etc, here.

• Lars Wirzenius, interesting blog tags.

– http://blog.liw.fi/tag/backups/
– http://blog.liw.fi/tag/obnam/

• Cache directory tag standard: http://www.bford.info/cachedir/

– http://liw.fi/cachedir/ is a utility to manage the tag files

73

http://obnam.org
http://blog.liw.fi/tag/backups/
http://blog.liw.fi/tag/obnam/
http://www.bford.info/cachedir/
http://liw.fi/cachedir/

74 CHAPTER 19. SEE ALSO

Chapter 20

Legal stuff

This entire work is covered by the GNU General Public License, version 3 or
later.

Copyright 2010-2013 Lars Wirzenius
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/.

A copy of the GPL is included in the file COPYING in the source tree, and can be
found at the URL above.

This manual (all the contents of the manual subdirectory in the source tree) is
additionally licensed under a Creative Commons Attribution 4.0 International
License. You can choose whether to use the GPL or the CC license for the
manual.

A copy of the Creative Commons license is included in the file CC-BY-SA-4.0.txt
in the source tree, and can be viewed online at http://creativecommons.org/
licenses/by-sa/4.0/legalcode.

75

http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

76 CHAPTER 20. LEGAL STUFF

Chapter 21

Supporting Obnam
development

Obnam is free software: you get full access to the source code, you can modify
the software as you wish, and you can distribute copies of the software in its
original or modified form. It is also free of charge.

One of the goals of Obnam is to make sure everyone has access to nice backup
software, and are not beholden to anyone else for that software. You can use
Obnam, and store your backups anywhere that suits you, and the Obnam
developers have no say in that.

However, Obnam development requires some resources. Obnam is primarily
developed by Lars Wirzenius, its original author (hi!), in his free time. If you
would like to help support Obnam development, here’s a list of things you could
do:

• Send fixes and improvements, either to code or documentation.
• Donate something to the author. See http://obnam.org/donate/ for sug-

gestions.
• Hire the author to do some Obnam development. Contact him privately

by e-mail (liw@liw.fi).

Note that any of these are optional. If you like Obnam, and are happy just using
it, that’s completely OK.

77

http://obnam.org/donate/

	Introduction
	TL;DR: README FIRST: A quick tour of Obnam
	Configuration
	Initial backup
	Incremental backups
	Multiple clients in one repository
	Removing old generations
	Restoring data
	Using encryption

	You know you should
	Why backup?
	Backup concepts
	Backup strategies
	Backups and security
	Backup storage media considerations
	Glossary

	Installing Obnam
	Debian
	Other systems

	Backing up
	Your first backup
	Your second backup
	Choosing what to backup, and what not to backup
	Storing backups remotely
	URL syntax
	Pull backups
	Configuration files: a quick intro
	When your precious data is very large
	De-duplication
	De-duplication and safety against checksum collisions
	Locking
	Consistency of live data

	Restoring from backups
	Oh no! It's all FUSEd together
	Restoring without FUSE
	An actual example of a restoration
	Practice makes prestores painless

	Forgetting old backup generations
	Choosing a schedule for forgetting generations

	Verifying backups
	Sharing a repository between multiple clients
	Using encryption
	You don't admit to being a spy, so isn't encryption unnecessary?
	How Obnam encryption works
	Setting up Obnam to use encryption
	Checking if a repository uses encryption
	FIXME: Managing encryption keys in a repository

	Other stuff
	k4dirstat cache files

	Case studies
	Troubleshooting
	Turning on full logging
	Reporting problems (``bugs'')

	Obnam configuration files and settings
	Where is my configuration?
	Configuration file syntax
	Checking what my configuration is
	Finding out all the configuration settings

	The backup repository internals
	Repository file permissions

	Performance tuning
	Running Obnam under the Python profiler

	Participating in Obnam development
	Helping support users
	Writing and updating documentation
	Translating documentation
	Developing the code
	Project governance

	Appendix: Error messages
	By error code
	By name

	SEE ALSO
	Legal stuff
	Supporting Obnam development

